| Home. | Universe Galaxies And Stars Archives. | 
Universe Galaxies Stars logo.
     | Universe | Big Bang | Galaxies | Stars | Solar System | Planets | Hubble Telescope | NASA | Search Engine |

Atmosphere is the name for gases around planets.

Ten Years Since The Revolution at Amazon.

SAS Black Ops at Amazon.
Amazon Kindle EBook Reader: Click For More Information.

Atmosphere is the general name for a layer of gases that may surround a material body of sufficient mass. Atmosphere gases are attracted by the gravity of the body, and held fast if gravity is sufficient and the atmosphere's temperature is low. Some planets consist mainly of various gases, and thus have very deep atmospheres.

Jupiter's active atmosphere, including the Great Red Spot.

Earth, Venus, and Mars have atmospheres that envelop their surfaces, as do three of the satellites of the outer planets: Titan, Enceladus (moons of Saturn), and Triton (a moon of Neptune). In addition, the giant planets of the outer solar system - Jupiter, Saturn, Uranus, and Neptune - are composed predominantly of gases. Other bodies in the solar system possess extremely thin atmospheres. Such bodies are the Moon (Sodium gas), Mercury (sodium gas), Europa (Oxygen) and Io (sulfur). The Dwarf planet Pluto also has an envelope of gas as it approaches close to the Sun, but these gases are frozen for most of its orbit.

The Earth's atmosphere consists, from the ground up, of the troposphere (which includes the planetary boundary layer or peplosphere as lowest layer), stratosphere, mesosphere, ionosphere (or thermosphere), exosphere and the magnetosphere.

Initial atmospheric makeup is generally related to the chemistry and temperature of the local Solar nebula during planetary formation and the subsequent escape of interior gases. These original atmospheres underwent much evolution over time, with the varying properties of each planet resulting in very different outcomes.

surface gravity, the force that holds down an atmosphere, differs significantly among the planets. For example, the large gravitational force of the giant planet Jupiter is able to retain light gases such as Hydrogen and helium that escape from lower gravity objects. Second, the distance from the sun determines the energy available to heat atmospheric gas to the point where its molecules' thermal motion exceed the planet's escape velocity, the speed at which gas molecules overcome a planet's gravitational grasp. Thus, the distant and cold Titan, Triton, and Pluto are able to retain their atmospheres despite relatively low gravities.

Since a gas at any particular temperature will have molecules moving at a wide range of velocities, there will almost always be some slow leakage of gas into space. Lighter molecules move faster than heavier ones with the same thermal kinetic energy, and so gases of low molecular weight are lost more rapidly than those of high molecular weight. It is thought that Venus and Mars may have both lost much of their water when, after being photodissociated into hydrogen and oxygen by solar ultraviolet, the hydrogen escaped. Earth's magnetic field helps to prevent this, as the solar wind greatly enhances the escape of hydrogen.

Other mechanisms that can cause atmosphere depletion are solar wind-induced sputtering, impact erosion, weathering, and sequestration-sometimes referred to as "freezing out"-into the regolith and polar caps.

Moreover, on Earth, atmospheric composition is largely governed by the by-products of the very life that it sustains.

From the perspective of the planetary geologist, atmospheres are important in the ways they shape planetary surfaces. Wind can transport particles, both eroding the surface and leaving deposits (eolian processes). frost and Precipitation can leave direct and indirect marks on a planetary surface. Climate changes can influence a planet's geological history. Conversely, studying surface geology leads to an understanding of the atmosphere and climate of a planet - both its present state and its past.

Interstellar planets, theoretically, may also retain thick atmospheres.

Further reading about the solar system.
The Sun Mercury Venus Earth Mars Ceres Jupiter Saturn Uranus Neptune Pluto Eris
Planets Dwarf planets Moons: Terran Martian Asteroidal Jovian Saturnian Uranian Neptunian Plutonian Eridian
Small bodies:   Meteorites Asteroids (Asteroid belt) Centaurs TNOs (Kuiper belt/Scattered disc) Comets (Oort cloud)
Solar system related pages. astronomical objects and the solar system's list of solar system objects.

  Go To Print Article  

Universe - Galaxies and Stars: Links and Contacts

the web this site
 | GNU License | Contact | Copyright | WebMaster | Terms | Disclaimer | Top Of Page. |