| Home. | Universe Galaxies And Stars Archives. | | |
| Universe | Big Bang | Galaxies | Stars | Solar System | Planets | Hubble Telescope | NASA | Search Engine | | |
Drake equation predicts alien life to be in abundance in the universe. |
The Drake equation searches for alien life. The Drake equation hunts out other planets. The Drake equation (is also called the "Green Bank equation," the "Green Bank Formula," or erroneously labeled the "Sagan equation"). The Drake equation is a famous result in the fields of exobiology and the search for extraterrestrial intelligence (SETI). This equation was devised by Dr. Frank Drake (now Professor Emeritus of Astronomy and Astrophysics at the University of California, Santa Cruz) in 1960, in an attempt to estimate the number of extraterrestrial civilizations in the Milky Way (our galaxy) with which we might come into contact. The main purpose of the equation is to allow scientists to quantify the uncertainty of the factors that determine the number of such extraterrestrial civilizations. History of Drake equation. Frank Drake formulated his equation in 1960 in preparation for the Green Bank meeting. This meeting, held at Green Bank, West Virginia, established SETI as a scientific discipline. The historic meeting, whose participants became known as the "Order of the Dolphin," brought together leading astronomers, physicists, biologists, social scientists, and industry leaders to discuss the possibility of detecting intelligent life among the stars. The Green Bank meeting was also remarkable because it featured the first use of the famous formula that came to be known as the "Drake Equation." This explains why the equation is also known by its other names with the "Green Bank" designation. When Drake came up with this formula, he had no notion that it would become a staple of SETI theorists for decades to come. In fact, he thought of it as an organizational tool - a way to order the different issues to be discussed at the Green Bank conference, and bring them to bear on the central question of intelligent life in the universe. Carl Sagan, a great proponent of SETI, utilized and quoted the formula often and as a result the formula is often mislabeled as "The Sagan Equation." The Green Bank Meeting was commemorated by a plaque. The Drake equation is closely related to the Fermi paradox in that Drake suggested that a large number of extraterrestrial civilizations would form, but that the lack of evidence of such civilizations (the Fermi paradox) suggests that technological civilizations tend to destroy themselves rather quickly. This theory often stimulates an interest in identifying and publicizing ways in which humanity could destroy itself, and then counters with hopes of avoiding such destruction and eventually becoming a space-faring species. A similar argument is The Great Filter, which notes that since there are no observed extraterrestrial civilizations, despite the vast number of stars, then some step in the process must be acting as a filter to reduce the final value. According to this view, either it is very hard for intelligent life to arise, or the lifetime of such civilizations must be relatively short. The grand question of the number of communicating civilizations in our galaxy could, in Drake's view, be reduced to seven smaller issues with his equation. The Drake equation states that: where:
and
Alternative expression of the Drake equation. The number of stars in the galaxy now, N^{*}, is related to the star formation rate R^{*} by
where T_{g} is the age of the galaxy. Assuming for simplicity that R^{*} is constant, then and the Drake equation can be rewritten into an alternate form phrased in terms of the more easily observable value, N^{*}. Drake equation R factor. One can question why the number of civilizations should be proportional to the star formation rate, though this makes technical sense. (The product of all the terms except L tells how many new communicating civilizations are born each year. Then you multiply by the lifetime to get the expected number. For example, if an average of 0.01 new civilizations are born each year, and they each last 500 years on the average, then on the average 5 will exist at any time.) The original Drake Equation can be extended to a more realistic model, where the equation uses not the number of stars that are forming now, but those that were forming several billion years ago. The alternate formulation, in terms of the number of stars in the galaxy, is easier to explain and understand, but implicitly assumes the star formation rate is constant over the life of the galaxy. Expansions of the Drake equation. Additional factors that have been described for the Drake equation include:
With these factors in mind, the Drake equation states: Drake equation: Reappearance number. The equation may furthermore be multiplied by how many times an intelligent civilization may occur on planets where it has happened once. Even if an intelligent civilization reaches the end of its lifetime after, for example, 10,000 years, life may still prevail on the planet for billions of years, availing for the next civilization to evolve. Thus, several civilizations may come and go during the lifespan of one and the same planet. Thus, if n_{r} is the average number of times a new civilization reappears on the same planet where a previous civilization once has appeared and ended, then the total number of civilizations on such a planet would be (1+n_{r}), which is the actual reappearance factor added to the equation. The factor depends on what generally is the cause of civilization extinction. If it is generally by temporary inhabitability, for example a nuclear winter, then n_{r} may be relatively high. On the other hand, if it is generally by permanent inhabitability, such as stellar evolution, then n_{r} may be almost zero. In the case of total life extinction, a similar factor may be applicable for f_{l}, that is, how many times life may appear on a planet where it has appeared once. METI factor in the Drake equation. Alexander Zaitsev said that to be in a communicative phase and emit dedicated messages are not the same. For example, humans, although being in a communicative phase, are not a communicative civilization; we do not practice such activities as the purposeful and regular transmission of interstellar messages. For this reason, he suggested introducing the METI factor (Messaging to Extra-Terrestrial Intelligence) to the classical Drake Equation. The factor is defined as "The fraction of communicative civilizations with clear and non-paranoid planetary consciousness", or alternatively expressed, the fraction of communicative civilizations that actually engage in deliberate interstellar transmission. Historical estimates of the parameters of the Drake equation. Considerable disagreement on the values of most of these parameters exists, but the values used by Drake and his colleagues in 1961 were:
Drake's values give N = 10 × 0.5 × 2 × 1 × 0.01 × 0.01 × 10,000 = 10. The value of R* is determined from considerable astronomical data, and is the least disputed term of the equation; f_{p} is less certain, but is still much firmer than the values following. Confidence in n_{e} was once higher, but the discovery of numerous gas giants in close orbit with their stars has introduced doubt that life-supporting planets commonly survive the creation of their stellar systems. In addition, most stars in our galaxy are red dwarfs, which flare violently, mostly in X-rays-a property not conducive to life as we know it (simulations also suggest that these bursts erode planetary atmospheres). The possibility of life on moons of gas giants (such as Jupiter's moon Europa, or Saturn's moon Titan) adds further uncertainty to this figure. Geological evidence from the Earth suggests that f_{l} may be very high; life on Earth appears to have begun around the same time as favorable conditions arose, suggesting that abiogenesis may be relatively common once conditions are right. However, this evidence only looks at the Earth (a single model planet), and contains anthropic bias, as the planet of study was not chosen randomly, but by the living organisms that already inhabit it (ourselves). Also countering this argument is that there is no evidence for abiogenesis occurring more than once on the Earth-that is, all terrestrial life stems from a common origin. If abiogenesis were more common it would be speculated to have occurred more than once on the Earth. In addition, from a classical hypothesis testing standpoint, there are zero degrees of freedom, permitting no valid estimates to be made. One piece of data that would have major impact on f_{l} is the discovery of life on Mars or another planet or moon. If life were to be found on Mars that developed independently from life on Earth it would imply a higher value for f_{l}. While this would improve the degrees of freedom from zero to one, there would remain a great deal of uncertainty on any estimate due to the small sample size, and the chance they are not really independent. Similar arguments of bias can be made regarding f_{i} and f_{c} by considering the Earth as a model: intelligence with the capacity of extraterrestrial communication occurs only in one species in the 4 billion year history of life on Earth. If generalized, this means only relatively old planets may have intelligent life capable of extraterrestrial communication. Again this model has a large anthropic bias and there are still zero degrees of freedom. Note that the capacity and willingness to participate in extraterrestrial communication has come relatively "quickly", with the Earth having only an estimated 100,000 year history of intelligent human life, and less than a century of technological ability. f_{i}, f_{c} and L, like f_{l}, are guesses. Estimates of f_{i} have been affected by discoveries that the solar system's orbit is circular in the galaxy, at such a distance that it remains out of the spiral arms for hundreds of millions of years (evading radiation from novae). Also, Earth's large moon may aid the evolution of life by stabilizing the planet's axis of rotation. In addition, while it appears that life developed soon after the formation of Earth, the Cambrian explosion, in which a large variety of multicellular life forms came into being, occurred a considerable amount of time after the formation of Earth, which suggests the possibility that special conditions were necessary. Some scenarios such as the Snowball Earth or research into the extinction events have raised the possibility that life on Earth is relatively fragile. Again, the controversy over life on Mars is relevant since a discovery that life did form on Mars but ceased to exist would affect estimates of these terms. The astronomer Carl Sagan speculated that all of the terms, except for the lifetime of a civilization, are relatively high and the determining factor in whether there are large or small numbers of civilizations in the universe is the civilization lifetime, or in other words, the ability of technological civilizations to avoid self-destruction. In Sagan's case, the Drake equation was a strong motivating factor for his interest in environmental issues and his efforts to warn against the dangers of nuclear warfare. By plugging in apparently "plausible" values for each of the parameters above, the resultant expectant value of N is often (much) greater than 1. This has provided considerable motivation for the SETI movement. However, we have no evidence for extraterrestrial civilizations. This conflict is often called the Fermi paradox, after Enrico Fermi who first asked about our lack of observation of extraterrestrials, and motivates advocates of SETI to continually expand the volume of space in which another civilization could be observed. Other assumptions give values of N that are (much) less than 1, but some observers believe this is still compatible with observations due to the anthropic principle: no matter how low the probability that any given galaxy will have intelligent life in it, the universe must have at least one intelligent species by definition otherwise the question would not arise. Some computations of the Drake equation, given different assumptions:
But a pessimist might equally well believe that life seldom becomes intelligent, and intelligent civilizations do not last very long:
Alternatively, making some more optimistic assumptions, and assuming that 10% of civilizations become willing and able to communicate, and then spread through their local star systems for 100,000 years (a very short period in geologic time):
Current estimates of the parameters This section attempts to list best current estimates for the parameters of the Drake equation. R* = the rate of star creation in our galaxy
f_{p} = the fraction of those stars that have planets
n_{e} = the average number of planets (satellites may perhaps sometimes be just as good candidates) that can potentially support life per star that has planets
f_{l} = the fraction of the above that actually go on to develop life
f_{i} = the fraction of the above that actually go on to develop intelligent life
f_{c} = the fraction of the above that are willing and able to communicate
L = the expected lifetime of such a civilization for the period that it can communicate across interstellar space
Values based on the above estimates,
result in
Criticism of the Drake equation. Criticism of the Drake equation follows mostly from the observation that several terms in the equation are largely or entirely based on conjecture. Thus the equation cannot be used to draw firm conclusions of any kind. As T.J. Watson states:
Likewise, in a 2003 lecture at Caltech, Michael Crichton, a science fiction author, stated:
One reply to such criticism is that experiments by SETI scientists do not attempt to address the Drake equation for the existence of extraterrestrial civilizations anywhere in the universe, but are focused on specific, testable hypotheses (i.e., "do extraterrestrial civilizations communicating in the radio spectrum exist near sun-like stars within 50 light years of the Earth?"). Another reply to such criticism is that even though the Drake equation currently involves speculation about unmeasured parameters, it stimulates dialog on these topics. Then the focus becomes how to proceed experimentally. A deeper objection is that the very form of the Drake equation assumes that civilizations arise and then die out within their original solar systems. If interstellar colonization is possible, then this assumption is invalid, and the equations of population dynamics would apply instead. Drake equation: fiction. The Drake equation and the Fermi paradox have been discussed many times in science fiction, including both serious takes in stories such as Frederick Pohl's Hugo award-winning "Fermi and Frost", which cites the paradox as evidence for the short lifetime of technical civilizations -that is, the possibility that once a civilization develops the power to destroy itself (perhaps by nuclear winter), it does, and humorous commentary in stories such as Terry Bisson's classic short story "They're Made Out of Meat".
External links for the Drake equation.
Go To Print Article |
Universe - Galaxies and Stars: Links and Contacts |
| GNU License | Contact | Copyright | WebMaster | Terms | Disclaimer | Top Of Page. | |