| Home. | Universe Galaxies And Stars Archives. | 
Universe Galaxies Stars logo.
     | Universe | Big Bang | Galaxies | Stars | Solar System | Planets | Hubble Telescope | NASA | Search Engine |

James Webb space telescope will replace Hubble telescope.


Ten Years Since The Revolution at Amazon.

SAS Black Ops at Amazon.
Amazon Kindle EBook Reader: Click For More Information.

The James Webb Space Telescope (JWST) is a planned infrared orbiting observatory (or space telescope). The James Webb Space Telescope is the successor to the aging Hubble Space Telescope. The main scientific goal of the James Webb Space Telescope is to observe the most distant objects in the universe, those beyond the reach of either ground based instruments or the Hubble. The James Webb Space Telescope project is a NASA-led international collaboration with contributors in 15 nations, including NASA, the European Space Agency and the Canadian Space Agency. Originally called the Next Generation Space Telescope (or NGST), it was renamed after NASA's second administrator, James E. Webb, in 2002. Current plans call for the telescope to be launched on an Ariane 5 rocket, no earlier than June 2013.

James Webb Space Telescope.
James Webb Space Telescope.
Artist's impression of JWST.
General information
Organization NASA  /ESA /CSA
Launch date June 2013 (earliest)
Launched from Arianespace's ELA-3 launch complex near Kourou, French Guiana
Launch vehicle Ariane 5
Mission length 5 years (design)
10 years (goal)
Mass 6,200 kg (14,000 lb)
Orbit period 1 year
Location 1.5106 km from Earth
(Sun-Earth L2)
Telescope style Three Mirror Anastigmat
Wavelength Infrared (IR)
Diameter ~6.5 m (21 ft)
Collecting area 25 m2 (270 sq ft)
Focal length 131.4 m (431 ft)
Instruments
NIRCam Near IR Camera
NIRSpec Near IR Spectrograph
MIRI Mid IR Instrument
FGS Fine Guidance Sensor
Website www.jwst.nasa.gov

James Webb Space Telescope: mission.

The James Webb Space Telescope's primary scientific mission has four main components: to search for light from the first stars and galaxies which formed in the Universe after the Big Bang, to study the formation and evolution of galaxies, to understand the formation of stars and planetary systems, and to study planetary systems and the origins of life.

Due to a combination of redshift, dust obscuration, and the intrinsically low temperatures of many of the sources to be studied, the James Webb Space Telescope must operate at infrared wavelengths, spanning the wavelength range from 0.6 to 28 micrometres. In order to ensure that the observations are not hampered by infrared emission from the telescope and instruments themselves, the entire observatory must be cold. It must be well-shielded from the Sun so that it can radiatively cool to roughly 40 kelvin (-233.15 ?C, -387.67 ?F). To this end, James Webb Space Telescope will incorporate a large metalized fan-fold sunshield, which will unfurl to block infrared radiation from the Sun, Earth and Moon. The telescope's location at the Sun-Earth L2 Lagrange point ensures that the Earth and Sun occupy roughly the same relative position in the telescope's view, and thus make the operation of this shield possible.

The observatory is due to be launched no earlier than June 2013 and is currently scheduled to be launched by an Ariane 5 from Guiana Space Centre Kourou, French Guiana, into an L2 orbit with a launch mass of approximately 6.2 tonnes. After a commissioning period of approximately six months, the observatory will begin the science mission, which is expected to last a minimum of five years. The potential for extension of the science mission beyond this period exists, and the observatory is being designed accordingly.

Optics of the James Webb Space Telescope.

Although James Webb Space Telescope has a planned mass half that of the Hubble, its primary mirror (a 6.5 meter diameter beryllium reflector) has a collecting area which is almost 6 times larger. As this diameter is much larger than any current launch vehicle, the mirror is composed of 18 hexagonal segments, which will unfold after the telescope is launched. These mirrors are currently being developed by Axsys Technologies in Cullman, Alabama.

James Webb Space Telescope.
A diagram showing the five Lagrangian points of the Sun-Earth system. James Webb Space Telescope will be located at L2, where the Earth and sun are directly behind it at all times.

Sensitive micromotors and a wavefront sensor will position the mirror segments in the correct location, but subsequent to this initial configuration they will only rarely be moved; this process is therefore much like an initial calibration, unlike terrestrial telescopes like the Keck which continually adjust their mirror segments using active optics to overcome the effects of gravitational and wind loading

Ball Aerospace & Technologies Corp. is the principal optical subcontractor for the James Webb Space Telescope program, led by prime contractor Northrop Grumman Aerospace Systems, under a contract from the NASA Goddard Space Flight Center, in Greenbelt, Maryland. Seventeen additional primary mirror segments, secondary, and tertiary mirrors, plus flight spares, will be delivered to Ball Aerospace from its beryllium mirror manufacturing team that includes Axsys, Brush Wellman, and Tinsley Laboratories. As each additional mirror is delivered to Ball Aerospace over the next two years (to 2010), it will be mounted onto a lightweight, actuated strong-back assembly and undergo functional and environmental testing.

NASA has indicated that they will be incorporating microshutters, each about 100 by 200 micrometres, into the optics of the James Webb Space Telescope's Near InfraRed Spectrograph. An array of 62,000 of the shutters will sit in front of the spectrograph's 8 megapixel infrared detector. The microshutters will create an effect similar to a human eye squinting. When one squints, one's eyelashes block light; in the same way, the microshutters allow the telescope to focus on the faint light of stars and galaxies even if they are adjacent to brighter objects.

Current status of the James Webb Space Telescope.

The James Webb Space Telescope program is in its Final Design and Fabrication phase (Phase C). In March 2008, the project successfully completed its Preliminary Design Review (PDR). In April 2008, the project passed the Non-Advocate Review.

James Webb Space Telescope's performance.
A Simulation of James Webb Space Telescope's performance. Credit: JWST/NASA/ESA.

In January 2007 nine of the ten technology development items in the program successfully passed a non-advocate review. These technologies were deemed sufficiently mature to retire significant risks in the program. The remaining technology development item (the MIRI cryocooler) completed its technology maturation milestone in April 2007. This technology review represented the beginning step in the process that ultimately moved the program into its detailed design phase (Phase C).

In April 2006 the program was independently reviewed following a replanning phase begun in August 2005. The review concluded the program was technically sound, but that funding phasing at NASA needed to be changed. NASA has rephased its James Webb Space Telescope budgets accordingly. The August 2005 replanning was necessitated by the cost growth revealed in Spring 2005. The primary technical outcomes of the replanning are significant changes in the integration and test plans, a 22-month launch delay (from 2011 to 2013), and elimination of system level testing for observatory modes at wavelength shorter than 1.7 micrometres. Other major features of the observatory are unchanged following the replanning efforts.

As of the 2005 re-plan, the life-cycle cost of the project was estimated at about US$ 4.5 billion. This is comprised of approximately $3.5 billion for design, development, launch and commissioning, and approximately $1.0 billion for ten years of operations. The ESA is contributing about 300million euros, including the launch, and the Canadian Space Agency about $39M Canadian. As of May 2007 costs were still on target.

Construction and engineering of the James Webb Space Telescope.

NASA's Goddard Space Flight Center in Greenbelt, Maryland is leading the management of the observatory project. The project scientist for the James Webb Space Telescope is John C. Mather. Northrop Grumman Aerospace Systems serves as the primary contractor for the development and integration of the observatory. They are responsible for developing and building the spacecraft element, which includes both the spacecraft bus and sunshield. Ball Aerospace has been subcontracted to develop and build the Optical Telescope Element (OTE). Goddard Space Flight Center is also responsible for providing the Integrated Science Instrument Module (ISIM).

The ISIM contains four science instruments. NIRCam (Near InfraRed Camera) is an infrared imager which will have a spectral coverage ranging from the edge of the visible (0.6 micrometres) through the Near Infrared (5 micrometres). The NIRCam will also serve as the observatory's wavefront sensor, which is required for wavefront sensing and control activities. The NIRCam is being built by a team led by the University of Arizona, with Principal Investigator Marcia Rieke. The industrial partner is Lockheed-Martin's Advanced Technology Center located in Palo Alto, California.

In addition to the Near Infrared (NIR) imaging capabilities of the NIRCam, the observatory will also perform spectrography over this range with the NIRSpec (Near InfraRed Spectrograph). NIRSpec is being built by the European Space Agency at ESTEC in Noordwijk, the Netherlands, leading a team involving EADS Astrium, Ottobrunn and Friedrichshafen, Germany, and the Goddard Space Flight Center: the NIRSpec project scientist is Peter Jakobsen. The NIRSpec design provides 3 observing modes: a low resolution mode using a prism, an R~1000 multi-object mode and an R~2700 integral field unit or long-slit spectroscopy mode. Switching of the modes is done by operating a wavelength preselection mechanism called Filter Wheel Assembly and selecting a correspondent dispersive element (prism or grating)using the Grating Wheel Assembly mechanism. Both mechanisms are based on the successful ISOPHOT wheel mechanisms of the Infrared Space Observatory. The mechanisms and their optical elements are being designed, integrated and tested by Carl Zeiss Optronics GmbH of Oberkochen, Germany, under contract from Astrium.

The mid-IR wavelength range will be measured by the MIRI (Mid InfraRed Instrument), which contains both a mid-IR camera and spectrometer that has a spectral range extending from 5 to 27 micrometres. MIRI is being developed as a collaboration between NASA and a consortium of European countries, and is led by George Rieke (University of Arizona) and Gillian Wright (UK Astronomy Technology Centre, Edinburgh, part of the Science and Technology Facilities Council (STFC). MIRI features similar wheel mechanisms as NIRSpec which are also developed and built by Carl Zeiss Optronics GmbH under contract from the Max Planck Institute for Astronomy, Heidelberg.

The FGS (Fine Guidance Sensor), led by the Canadian Space Agency under project scientist John Hutchings (Dominion Astrophysical Observatory, Victoria), is used to stabilize the line-of-sight of the observatory during science observations and also includes a 'Tunable Filter module for astronomical narrow-band imaging in the 1.5 to 5 micrometre wavelength range. The infrared detectors for both the NIRCam and NIRSpec modules are being provided by Teledyne Imaging Sensors (formerly Rockwell Scientific Company).

NASA is considering plans to add a grapple feature so future spacecraft might visit the observatory to fix gross deployment problems, such as a stuck solar panel or antenna. However, the telescope itself would not be serviceable, so that astronauts would not be able to do things such as swapping out instruments, as has been done with the Hubble Telescope. Final approval for such an addition will be considered as part of the Preliminary Design Review in March 2008.

Most of the data processing on the telescope is done by conventional single board computers. The conversion of the analog science data to digital form is performed by the custom-built "SIDECAR ASIC" ("System for Image Digitization, Enhancement, Control And Retrieval Application Specific Integrated Circuit"). It is said that the SIDECAR ASIC will include all the functions of a 20-pound instrument box in a package the size of a half-dollar, and consume only 11 milliwatts of power. Since this conversion must be done close to the detectors, on the cool side of the telescope, the low power use of this IC will be important for maintaining the low temperature required for optimal operation of the James Webb Space Telescope.

Ground support for the James Webb Space Telescope.

The Space Telescope Science Institute (STScI) in Baltimore, MD, has been selected as the Science and Operations Center (S&OC) for JWST. In this capacity, STScI will be responsible for the scientific operation of the telescope and delivery of data products to the astronomical community

Public displays of the James Webb Space Telescope.

In May 2007 a full-scale model of the telescope was assembled for display at the Smithsonian's National Air and Space Museum on the National Mall, Washington DC. The model was intended to give the viewing public a better understanding of the size, scale and complexity of the satellite. The model is significantly different from the telescope, as the model must withstand gravity and weather, so is constructed mainly of aluminum and steel, weighs 12,000 lbs (5.5 tonnes), and is approximately 80 feet (24 m) long, 40 feet (12 m) wide and 40 feet (12 m) tall (24 m ?12 m ?12 m).

The model has been on display at various places since 2005: Seattle, WA; Colorado Springs, CO; Paris, France; Greenbelt, MD; Rochester, NY; Orlando, FL; Dublin, Ireland; Montreal, Canada and Munich, Germany. The model was built by the main contractor, Northrop Grumman Aerospace Systems.

James Webb Space Telescope's orbit.

To avoid swamping the very faint astronomical signals with radiation from the telescope, the telescope and its instruments must be very cold. Therefore, JWST has a large shield that blocks the light from the Sun, Earth, and Moon, which otherwise would heat up the telescope, and interfere with the observations. To have this work, JWST must be in an orbit where all three of these objects are in about the same direction.

The answer is to put the James Webb Space Telescope in an orbit around the Earth-Sun L2 point.

The L2 orbit is an elliptical orbit about the semi-stable second Lagrange point . It is one of the five solutions by the mathematician Joseph-Louis Lagrange in the 18th century to the three-body problem. Lagrange was searching for a stable configuration in which three bodies could orbit each other yet stay in the same position relative to each other. He found five such solutions, and they are called the five Lagrange points in honor of their discoverer.

In three of the solutions found by Lagrange, the bodies are in line (L1, L2, and L3); in the other two, the bodies are at the points of equilateral triangles (L4 and L5). The five Lagrangian points for the Sun-Earth system are shown in the diagram below. An object placed at any one of these 5 points will stay in place relative to the other two.

In the case of JWST, the 3 bodies involved are the Sun, the Earth and the JWST. Normally, an object circling the Sun further out than the Earth would take more than one year to complete its orbit. However, the balance of gravitational pull at the L2 point means that JWST will keep up with the Earth as it goes around the Sun. The gravitational forces of the Sun and the Earth can nearly hold a spacecraft at this point, so that it takes relatively little rocket thrust to keep the spacecraft in orbit around L2.

James Webb Space Telescope image gallery:


  Go To Print Article  


Universe - Galaxies and Stars: Links and Contacts

the web this site
 | GNU License | Contact | Copyright | WebMaster | Terms | Disclaimer | Top Of Page. |