| Home. | Universe Galaxies And Stars Archives. | 
Universe Galaxies Stars logo.
     | Universe | Big Bang | Galaxies | Stars | Solar System | Planets | Hubble Telescope | NASA | Search Engine |

Quark-Gluon plasma Created.


Ten Years Since The Revolution at Amazon.

SAS Black Ops at Amazon.
Amazon Kindle EBook Reader: Click For More Information.

Degree of interaction among quarks.
Degree of interaction among quarks in liquid gold-gold collisions. Image credit: RHIC.

Physicists have used the Brookhaven National Laboratory's relativistic heavy ion collider to create quark-gluon plasma; a mysterious form of matter that was probably present in the first moments after the Big Bang. The team created it by smashing the nuclei of gold atoms together at relativistic speeds. The resulting explosion of particles lasted just 10-20 seconds. Astronomers think that large neutron stars might go into a quark-gluon phase before they collapse into black holes.

Using high-speed collisions between gold atoms, scientists think they have re-created one of the most mysterious forms of matter in the universe - quark-gluon plasma. This form of matter was present during the first microsecond of the Big Bang and may still exist at the cores of dense, distant stars.

UC Davis physics professor Daniel Cebra is one of 543 collaborators on the research. His main role was building the electronic listening devices that collect information about the collisions, a job he compared to "troubleshooting 120,000 stereo systems."

Now, using those detectors, "we look for trends in what happened during the collision to learn what the quark-gluon plasma is like," he said.

"We have been trying to melt Neutrons and protons, the building blocks of atomic nuclei, into their constituent quarks and gluons," Cebra said. "We needed a lot of heat, pressure and energy, all localized in a small space."

The scientists produced the right conditions with head-on collisions between the nuclei of gold atoms. The resulting quark-gluon plasma lasted an extremely short time - less than 10-20 seconds, Cebra said. But the collision left tracings that the scientists could measure.

"Our work is like accident reconstruction," Cebra said. "We see fragments coming out of a collision, and we construct that information back to very small points."

Quark-gluon plasma was expected to behave like a gas, but the data shows a more liquid-like substance. The plasma is less compressible than expected, which means that it may be able to support the cores of very dense stars.

"If a neutron star gets large and dense enough, it may go through a quark phase, or it may just collapse into a black hole," Cebra said. "To support a quark star, the quark-gluon plasma would need rigidity. We now expect there to be quark stars, but they will be hard to study. If they exist, they're semi-infinitely far away."

The project is led by Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, with collaborators at 52 institutions worldwide. The work was done in Brookhaven's relativistic heavy ion collider (RHIC).




  Go To Print Article  



Universe - Galaxies and Stars: Links and Contacts

the web this site
 | GNU License | Contact | Copyright | WebMaster | Terms | Disclaimer | Top Of Page. |